Detecting Chronic Kidney Disease from Blood Samples using Neural Networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Endocrine disorders in chronic kidney disease
Background and Objective: Endocrine disorders are common in patients with chronic kidney disease (CKD). The aim of the present study is reviewing available literature to give a deep understanding of complexities of endocrine disorders in chronic kidney disease. Methods: A narrative reviewing method based on the available literature was approached. Findings: Generally, when renal function de...
متن کاملDetecting Epileptic Seizures from EEG Data using Neural Networks
We explore the use of neural networks trained with dropout in predicting epileptic seizures from electroencephalographic data (scalp EEG). The input to the neural network is a 126 feature vector containing 9 features for each of the 14 EEG channels obtained over 1-second, non-overlapping windows. The models in our experiments achieved high sensitivity and specificity on patient records not used...
متن کاملBlood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study.
To characterize the distribution of blood pressure (BP), prevalence, and risk factors for hypertension in pediatric chronic kidney disease, we conducted a cross-sectional analysis of baseline BPs in 432 children (mean age 11 years; 60% male; mean glomerular filtration rate 44 mL/min per 1.73 m(2)) enrolled in the Chronic Kidney Disease in Children cohort study. BPs were obtained using an aneroi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1712/1/012008